wip load profile engine
generating reasonably realistic load profiles
This commit is contained in:
parent
80eed10898
commit
8125583313
@ -1,16 +1,40 @@
|
||||
import numpy as np
|
||||
from Utilities.Time import generate_timestrings, index_peak_times, index_operating_hours
|
||||
from Utilities.Time import (
|
||||
generate_timestrings,
|
||||
index_peak_times,
|
||||
index_operating_hours,
|
||||
check_is_weekday,
|
||||
)
|
||||
from scipy.optimize import root_scalar
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as pl
|
||||
|
||||
|
||||
def get_no_of_peaks(peak_bounds):
|
||||
peak_occurences = np.random.randint(peak_bounds["min"], peak_bounds["max"], 1)
|
||||
def get_no_of_peaks(peak_bounds, is_weekday, peak_duration, peak_energy, site):
|
||||
# calculate theoretically maximum number of peaks based on daily consumption (kWh)
|
||||
max_occurences = np.floor(
|
||||
peak_energy / site["maximum_demand_kW"] / (peak_duration["max"] / 60)
|
||||
)
|
||||
|
||||
if is_weekday:
|
||||
peak_occurences = np.random.randint(
|
||||
peak_bounds["weekdays"]["min"], max_occurences, 1
|
||||
)
|
||||
else:
|
||||
peak_occurences = np.random.randint(
|
||||
peak_bounds["weekends"]["min"], max_occurences, 1
|
||||
)
|
||||
return peak_occurences
|
||||
|
||||
|
||||
def generate_peak_info(c, dt):
|
||||
no_of_peaks = get_no_of_peaks(c["site_info"]["no_of_peaks"])
|
||||
def generate_peak_info(c, dt, is_weekday, peak_energy, site):
|
||||
no_of_peaks = get_no_of_peaks(
|
||||
c["site_info"]["no_of_peaks"],
|
||||
is_weekday,
|
||||
c["site_info"]["peak_duration"],
|
||||
peak_energy,
|
||||
site,
|
||||
)
|
||||
operating_hours = generate_timestrings(
|
||||
c["site_info"]["operating hours"]["start"],
|
||||
c["site_info"]["operating hours"]["end"],
|
||||
@ -26,6 +50,17 @@ def generate_peak_info(c, dt):
|
||||
return peak_times, peak_durations
|
||||
|
||||
|
||||
def generate_peak_profile(idx_peak, c, site):
|
||||
# Generate a peak profile based on the peak indices and site information
|
||||
peak_profile = np.zeros(len(idx_peak))
|
||||
for i in range(1, np.max(idx_peak) + 1):
|
||||
peak_profile[idx_peak == i] = site["maximum_demand_kW"] * np.random.uniform(
|
||||
1 - c["noise"]["range"],
|
||||
1 + c["noise"]["range"],
|
||||
)
|
||||
return peak_profile
|
||||
|
||||
|
||||
def generate_out_of_hours_consumption_ratio(c):
|
||||
# Generate a random ratio for out-of-hours consumption
|
||||
ratio = np.random.uniform(
|
||||
@ -35,18 +70,22 @@ def generate_out_of_hours_consumption_ratio(c):
|
||||
return ratio
|
||||
|
||||
|
||||
def recompute_load_profile(
|
||||
load_profile,
|
||||
offset,
|
||||
):
|
||||
def recompute_load_profile(load_profile, offset, noise, peak_profile):
|
||||
# apply noise to the load profile, including max demand
|
||||
load_profile = load_profile * noise
|
||||
|
||||
# apply offset to the load profile
|
||||
load_profile += offset
|
||||
|
||||
# overwrite with peak profile
|
||||
for i in range(len(peak_profile)):
|
||||
if peak_profile[i] > 0:
|
||||
load_profile[i] = peak_profile[i]
|
||||
|
||||
return load_profile
|
||||
|
||||
|
||||
def get_load_profile(c, dt, batch_start_time, batch_process_duration):
|
||||
def get_load_profiles(c, dt, batch_start_time, batch_process_duration):
|
||||
# Generate load profile for each site
|
||||
|
||||
# c is the configuration dictionary
|
||||
@ -56,14 +95,26 @@ def get_load_profile(c, dt, batch_start_time, batch_process_duration):
|
||||
|
||||
# start with indexing all the peak occurences
|
||||
# generate timeseries from start to end time
|
||||
hours2seconds = 3600
|
||||
# check day of the week
|
||||
is_weekday = check_is_weekday(batch_start_time)
|
||||
start_time = batch_start_time
|
||||
end_time = start_time + batch_process_duration
|
||||
batch_process_duration_hours = batch_process_duration / 3600 # convert to hours
|
||||
timestamps = np.arange(start_time, end_time + 1, dt)
|
||||
batch_process_duration_hours = (
|
||||
batch_process_duration / hours2seconds
|
||||
) # convert to hours
|
||||
timestamps = np.arange(start_time, end_time, dt)
|
||||
idx_operating_hours = index_operating_hours(
|
||||
timestamps, c["site_info"]["operating hours"]
|
||||
)
|
||||
no_of_operating_hours = np.sum(idx_operating_hours > 0)
|
||||
no_of_operating_hours = (
|
||||
np.sum(idx_operating_hours)
|
||||
/ len(idx_operating_hours)
|
||||
* batch_process_duration_hours
|
||||
)
|
||||
|
||||
# initialise load profiles DataFrame
|
||||
load_profiles = pd.DataFrame(index=timestamps)
|
||||
|
||||
# loop through each site in the configuration
|
||||
for site in c["site_info"]["sites"]:
|
||||
@ -71,14 +122,13 @@ def get_load_profile(c, dt, batch_start_time, batch_process_duration):
|
||||
load_profile = np.zeros(len(timestamps))
|
||||
|
||||
# generate noise to make the profile more realistic
|
||||
noise = np.random.normal(
|
||||
noise = np.random.uniform(
|
||||
1 - c["noise"]["range"], 1 + c["noise"]["range"], len(timestamps)
|
||||
)
|
||||
# Generate peak times and durations
|
||||
peak_times, peak_durations = generate_peak_info(c, dt)
|
||||
|
||||
# Generate peak times and durations
|
||||
idx_peak = index_peak_times(timestamps, peak_times, peak_durations)
|
||||
# make every 2 seconds the same
|
||||
for i in range(0, len(noise), 2):
|
||||
noise[i : i + 2] = noise[i]
|
||||
|
||||
# Generate out-of-hours consumption ratio
|
||||
# The % of energy used outside of the operating hours
|
||||
@ -91,20 +141,66 @@ def get_load_profile(c, dt, batch_start_time, batch_process_duration):
|
||||
)
|
||||
out_of_hours_consumption = site["daily_consumption_kWh"] * out_of_hours_ratio
|
||||
|
||||
avg_operating_hour_consumption = (
|
||||
operating_hour_consumption / no_of_operating_hours
|
||||
)
|
||||
avg_out_of_hours_consumption = out_of_hours_consumption / (
|
||||
avg_operating_hour_power = operating_hour_consumption / no_of_operating_hours
|
||||
avg_out_of_hours_power = out_of_hours_consumption / (
|
||||
batch_process_duration_hours - no_of_operating_hours
|
||||
)
|
||||
|
||||
# baseline operating hour power is 40% higher than out-of-hours power
|
||||
gain = 1.4
|
||||
assumed_operating_baseline_power = avg_out_of_hours_power * gain
|
||||
baseline_energy = avg_out_of_hours_power * (
|
||||
batch_process_duration_hours - no_of_operating_hours
|
||||
) + (assumed_operating_baseline_power * no_of_operating_hours)
|
||||
|
||||
peak_energy = site["daily_consumption_kWh"] - baseline_energy
|
||||
|
||||
# Generate peak times and durations
|
||||
peak_times, peak_durations = generate_peak_info(
|
||||
c, dt, is_weekday, peak_energy, site
|
||||
)
|
||||
|
||||
# Generate peak times and durations
|
||||
idx_peak = index_peak_times(timestamps, peak_times, peak_durations)
|
||||
|
||||
# Generate peak profile
|
||||
peak_profile = generate_peak_profile(idx_peak, c, site)
|
||||
|
||||
# assign base load profile
|
||||
load_profile[idx_operating_hours > 0] = avg_operating_hour_consumption
|
||||
load_profile[idx_operating_hours == 0] = avg_out_of_hours_consumption
|
||||
load_profile[idx_operating_hours > 0] = avg_operating_hour_power
|
||||
load_profile[idx_operating_hours == 0] = avg_out_of_hours_power
|
||||
|
||||
# apply peak loads
|
||||
for i in range(1, np.max(idx_peak) + 1):
|
||||
load_profile[idx_peak == i] = site["maximum_demand_kW"]
|
||||
# smoothen out sharp edges
|
||||
load_profile = np.convolve(load_profile, np.ones(40) / 40, mode="same")
|
||||
|
||||
# apply noise to the load profile, including max demand
|
||||
load_profile = load_profile * noise
|
||||
def objective(x):
|
||||
# Objective function to minimize the difference between the load profile and the target profile
|
||||
# x is the offset
|
||||
adjusted_profile = recompute_load_profile(
|
||||
load_profile, x, noise, peak_profile
|
||||
)
|
||||
# get energy consumption in kWh
|
||||
energy_consumption = np.sum(adjusted_profile) * dt / 3600
|
||||
target_consumption = site["daily_consumption_kWh"]
|
||||
delta = energy_consumption - target_consumption
|
||||
return delta
|
||||
|
||||
# Use root_scalar to find the optimal offset
|
||||
result = root_scalar(
|
||||
objective,
|
||||
bracket=[-site["maximum_demand_kW"] * 10, site["maximum_demand_kW"] * 10],
|
||||
method="bisect",
|
||||
)
|
||||
|
||||
if result.converged:
|
||||
offset = result.root
|
||||
else:
|
||||
raise ValueError("Root finding did not converge")
|
||||
|
||||
# Recompute the load profile with the optimal offset
|
||||
load_profile = recompute_load_profile(load_profile, offset, noise, peak_profile)
|
||||
|
||||
# Add the load profile to the DataFrame
|
||||
load_profiles[site["name"]] = load_profile
|
||||
|
||||
return load_profiles
|
||||
|
||||
@ -74,3 +74,14 @@ def index_operating_hours(timestamps, operating_hours):
|
||||
operating_indices[i] = 1 # mark as operating hour
|
||||
|
||||
return operating_indices
|
||||
|
||||
|
||||
def check_is_weekday(batch_start_time):
|
||||
"""Checks if the batch start time is on a weekday."""
|
||||
# batch_start_time is in seconds since the epoch
|
||||
start_time = datetime.fromtimestamp(batch_start_time)
|
||||
if start_time.weekday() >= 5: # Saturday or Sunday
|
||||
is_weekday = False
|
||||
else:
|
||||
is_weekday = True
|
||||
return is_weekday
|
||||
|
||||
@ -4,7 +4,7 @@ sim_time:
|
||||
duration_days: 60
|
||||
|
||||
noise:
|
||||
range: 0.15
|
||||
range: 0.3
|
||||
|
||||
paths:
|
||||
site_info: YAMLs/site_info.yaml
|
||||
|
||||
@ -26,8 +26,10 @@ operating hours:
|
||||
end: "19:00"
|
||||
time zone: Asia/Kuala_Lumpur
|
||||
no_of_peaks:
|
||||
min: 30
|
||||
max: 100
|
||||
weekdays:
|
||||
min: 5
|
||||
weekends:
|
||||
min: 1
|
||||
peak_duration:
|
||||
unit: minutes
|
||||
min: 1
|
||||
|
||||
20
main.py
20
main.py
@ -1,6 +1,8 @@
|
||||
import yaml
|
||||
from Utilities.Time import get_start_time
|
||||
from Utilities.LoadProfile import get_load_profile
|
||||
from Utilities.LoadProfile import get_load_profiles
|
||||
import matplotlib.pyplot as pl
|
||||
import pandas as pd
|
||||
|
||||
# read config file
|
||||
c = yaml.safe_load(open("YAMLs/config.yml"))
|
||||
@ -20,5 +22,17 @@ c["sim_time"]["batch_process_seconds"] = c["sim_time"]["batch_process_hours"] *
|
||||
# load site info
|
||||
c["site_info"] = yaml.safe_load(open(c["paths"]["site_info"]))
|
||||
|
||||
# generate load profiles
|
||||
get_load_profile(c, dt, c["sim_start_time"], c["sim_time"]["batch_process_seconds"])
|
||||
cumulative_load_profiles = pd.DataFrame()
|
||||
|
||||
# loop through timesteps
|
||||
for i in range(
|
||||
c["sim_start_time"], c["sim_end_time"], c["sim_time"]["batch_process_seconds"]
|
||||
):
|
||||
|
||||
# generate load profiles
|
||||
load_profiles = get_load_profiles(
|
||||
c, dt, c["sim_start_time"], c["sim_time"]["batch_process_seconds"]
|
||||
)
|
||||
|
||||
# add to cumulative load profiles
|
||||
cumulative_load_profiles = pd.concat([cumulative_load_profiles, load_profiles], axis=1
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user