import pandas as pd def initialise_SoC(bess): """Initialise the state of charge (SoC) for the BESS.""" for i in range(0, len(bess["units"])): # initially fully charged bess["units"][i]["SoC"] = 1 return bess def initial_site_assignment(c, bess): """Initialise the site assignment for each BESS.""" for k in range(0, len(bess["units"])): # assign each BESS unit to a site if k < len(c["site_info"]["sites"]): bess["units"][k]["site"] = c["site_info"]["sites"][k]["name"] else: bess["units"][k]["site"] = "Unassigned" return bess def discharge_bess(bess, site_name, dt, discharge_power): # convert discharge power to discharge energy (kW to kWh) discharge_energy = discharge_power * dt / 3600 """Discharge the BESS for a specific site.""" for index, unit in enumerate(bess["units"]): if unit["site"] == "Unassigned": continue if unit["site"] == site_name: new_soc = unit["SoC"] - (dt * discharge_energy) / unit["capacity_kWh"] new_soc = 0 if new_soc < 0 else new_soc else: # maintain SoC if not assigned to the site new_soc = unit["SoC"] # update SoC bess["units"][index]["SoC"] = new_soc return bess def predict_swap_time(bess_soc_for_cycle): """Predict the swap time for each BESS unit based on its SoC history.""" swap_times = {} min2sec = 60 threshold = 2 * min2sec # 2 minutes in seconds for unit_name, df in bess_soc_for_cycle.items(): # need to be at least 1 min of operation to start estimation if len(df) < threshold: swap_times[unit_name] = None continue # linear extrapolation to estimate swap time # calculate the slope of the SoC over time m = (df["SoC"].iloc[-1] - df["SoC"].iloc[0]) / ( df["Timestamp"].iloc[-1] - df["Timestamp"].iloc[0] ) if m == 0: swap_times[unit_name] = None continue # solve for the time when SoC reaches 0 swap_time = (0 - df["SoC"].iloc[0]) / m + df["Timestamp"].iloc[0] # assign to swap_times swap_times[unit_name] = swap_time return swap_times def update_cycle_SoC(bess_data, bess_soc_for_cycle, timestamps): init_df = pd.DataFrame(columns=["Timestamp", "SoC"]) # assign SoC for cycle for unit in bess_data["units"]: unit_name = unit["name"] # reset df if SoC is 0. Start a new cycle if unit["SoC"] == 0: bess_soc_for_cycle[unit_name] = init_df bess_soc_for_cycle[unit_name] = pd.concat( [ bess_soc_for_cycle[unit_name], pd.DataFrame( [[timestamps[i], unit["SoC"]]], columns=["Timestamp", "SoC"], ), ], axis=0, ) def arrange_swap(bess_data, c): for unit in bess_data["units"]: if unit["SoC"] < c["bess"]["buffer"]: # find for unassigned BESS unit with SOC at 100%