use PVWatts to simulate panel output

This commit is contained in:
Lucas Tan 2025-04-03 17:39:17 +08:00
parent ebae0aecfe
commit 05186bd77f
4 changed files with 48 additions and 40 deletions

View File

@ -18,16 +18,18 @@ def optimise_vertical_panel_pitch(c):
"""
c["array"]["spacing"] = pitch
logging.info(f"Optimizing with pitch: {pitch}m")
vertical_energy = calculate_energy_production_vertical(c)
vertical_energy, _ = calculate_energy_production_vertical(c)
total_energy_yield = vertical_energy.sum()
logger.info(f"Total energy yield for pitch {pitch}m: {total_energy_yield}kWh")
return -total_energy_yield
# perform minimization
initial_pitch = c["array"]["spacing"]
result = minimize(objective, initial_pitch, bounds=[(0, 90)])
result = minimize(
objective, initial_pitch, bounds=[(0, 5)], tol=1e-8, options={"eps": 0.5}
)
optimal_pitch = result.x[0]
c["array"]["spacing"] = optimal_pitch
logger.info(f"Optimal pitch found: {optimal_pitch}m")
vetical_energy = calculate_energy_production_vertical(c)
return (optimal_pitch, vetical_energy)
vetical_energy, no_of_panels = calculate_energy_production_vertical(c)
return (optimal_pitch, vetical_energy, no_of_panels)

View File

@ -132,11 +132,6 @@ def calculate_energy_production_vertical(c):
panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=90)
solar_positions, clearsky_data = get_solar_data(c)
# split the solar positions data into morning and afternoon, using solar azimuth of
# 180 degrees as the threshold
morning_solar_positions = solar_positions[solar_positions["azimuth"] <= 180]
afternoon_solar_positions = solar_positions[solar_positions["azimuth"] > 180]
# the first row is always not shaded so exclude
no_of_rows = np.unique(panel_coordinates["y"]).shape[0]
no_of_shaded_rows = no_of_rows - 1
@ -207,31 +202,31 @@ def calculate_energy_production_vertical(c):
# drop rows with poa_global NaN values
poa_rear = poa_rear.dropna(subset=["poa_global"])
effective_front = (
poa_front["poa_global"]
* (1 - morning_shaded_fraction)
* c["panel"]["efficiency"]
)
effective_front = poa_front["poa_global"] * (1 - morning_shaded_fraction)
effective_rear = (
poa_rear["poa_global"]
* (1 - afternoon_shaded_fraction)
* c["panel"]["bifaciality"]
* c["panel"]["efficiency"]
)
energy_front = effective_front * 15 / 60 / 1e3
energy_rear = effective_rear * 15 / 60 / 1e3
total_hourly_energy_m2 = energy_front + energy_rear
energy_total = total_hourly_energy_m2.sum()
logger.info(f"Energy yield calculated: {energy_total} kWh/m2")
total_hourly_irradiance = effective_front + effective_rear
system_size = c["panel"]["peak_power"] * no_of_panels
pdc0 = system_size
gamma_pdc = c["panel"]["temperature_coefficient"]
temp_cell = c["panel"]["nominal_operating_cell_temperature"]
pdc = pvlib.pvsystem.pvwatts_dc(
pdc0=pdc0,
gamma_pdc=gamma_pdc,
temp_cell=temp_cell,
g_poa_effective=total_hourly_irradiance,
)
total_hourly_energy = pdc * 15 / 60 / 1e3 # convert to kWh
panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"]
total_area = panel_area * no_of_panels
total_hourly_energy = total_hourly_energy_m2 * total_area
total_energy = total_hourly_energy.sum()
logger.info(f"Total energy yield calculated: {total_energy} kWh")
return total_hourly_energy
return total_hourly_energy, no_of_panels
def calculate_energy_production_horizontal(c):
@ -263,7 +258,6 @@ def calculate_energy_production_horizontal(c):
axis_tilt=axis_tilt,
)
shaded_fraction = shaded_fraction * no_of_shaded_rows / no_of_rows
logger.info(f"Shaded fraction calculated for solar positions: {shaded_fraction}")
poa = pvlib.irradiance.get_total_irradiance(
surface_tilt=0,
@ -277,18 +271,22 @@ def calculate_energy_production_horizontal(c):
)
poa = poa.dropna(subset=["poa_global"])
effective_front = (
poa["poa_global"] * (1 - shaded_fraction) * c["panel"]["efficiency"]
effective_front = poa["poa_global"] * (1 - shaded_fraction)
system_size = c["panel"]["peak_power"] * no_of_panels
pdc0 = system_size
gamma_pdc = c["panel"]["temperature_coefficient"]
temp_cell = c["panel"]["nominal_operating_cell_temperature"]
pdc = pvlib.pvsystem.pvwatts_dc(
pdc0=pdc0,
gamma_pdc=gamma_pdc,
temp_cell=temp_cell,
g_poa_effective=effective_front,
)
total_hourly_energy_m2 = effective_front * 15 / 60 / 1e3
energy_total = total_hourly_energy_m2.sum()
logger.info(f"Energy yield calculated: {energy_total} kWh/m2")
panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"]
total_area = panel_area * no_of_panels
total_hourly_energy = total_hourly_energy_m2 * total_area
total_hourly_energy = pdc * 15 / 60 / 1e3 # convert to kWh
total_energy = total_hourly_energy.sum()
logger.info(f"Total energy yield calculated: {total_energy} kWh")
return total_hourly_energy
return total_hourly_energy, no_of_panels

View File

@ -1,6 +1,6 @@
array:
system_size: 900 # in kWp
spacing: 1 # spacing between adjacent panel rows in m
spacing: 21.8 # spacing between adjacent panel rows in m
edge_setback: 1.8 # distance from the edge of the roof to the array
roof_slope: 0
slope: 0 # degrees from horizontal (+ve means shaded row is higher than the row in front)
@ -30,3 +30,6 @@ panel:
length: 2.384
width: 1.303
thickness: 0.033
temperature_coefficient: -0.0029 # /°C
nominal_operating_cell_temperature: 43 # °C

13
main.py
View File

@ -3,7 +3,10 @@ import yaml
import logging
import numpy as np
import matplotlib.pyplot as pl
from Utilities.Shading import calculate_energy_production_horizontal
from Utilities.Shading import (
calculate_energy_production_horizontal,
calculate_energy_production_vertical,
)
from Utilities.Optimisation import optimise_vertical_panel_pitch
logging.basicConfig(
@ -27,15 +30,17 @@ with open(config_path, "r") as file:
logger.info("Configuration loaded successfully.")
logger.debug(f"Configuration: {c}")
# calculate energy production for horizontal and vertical panels
optimal_pitch, vertical_energy = optimise_vertical_panel_pitch(c)
optimal_pitch, vertical_energy, no_of_panels_vertical = optimise_vertical_panel_pitch(c)
logger.info("Energy production for vertical panels calculated successfully.")
logger.debug(f"Vertical Energy Production: {vertical_energy.sum()}")
logger.debug("Number of panels: %d", no_of_panels_vertical)
horizontal_energy = calculate_energy_production_horizontal(c)
horizontal_energy, no_of_panels_horizontal = calculate_energy_production_horizontal(c)
logger.info("Energy production for horizontal panels calculated successfully.")
logger.debug(f"Horizontal Energy Production: {horizontal_energy.sum()}")
logger.debug("Number of panels: %d", no_of_panels_horizontal)
NOVA_scaledown = 0.75