pivot modelling method to using pvlib shading_fraction1d
This commit is contained in:
parent
ccd4afbcd6
commit
a36a8db753
@ -1,4 +1,5 @@
|
||||
import numpy as np
|
||||
from ladybug_geometry.geometry3d import Point3D, Vector3D
|
||||
|
||||
|
||||
def calculate_no_of_panels(system_size, panel_peak_power):
|
||||
|
@ -2,6 +2,7 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import logging
|
||||
import math
|
||||
from tqdm import tqdm
|
||||
|
||||
from ladybug_geometry.geometry3d.pointvector import Point3D, Vector3D
|
||||
from ladybug_geometry.geometry3d.plane import Plane
|
||||
@ -9,7 +10,9 @@ from ladybug_geometry.geometry3d.polyface import Polyface3D
|
||||
|
||||
import pvlib
|
||||
|
||||
from Utilities.Processes import calculate_no_of_panels
|
||||
from Utilities.Processes import (
|
||||
calculate_no_of_panels,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -98,7 +101,8 @@ def create_panels(coordinates, c):
|
||||
# Here, we assume the width runs in the positive X-direction.
|
||||
x_axis = Vector3D(1, 0, 0) # points north
|
||||
|
||||
panels = []
|
||||
panel_object = []
|
||||
base_planes = []
|
||||
for index, row in coordinates.iterrows():
|
||||
# Create the bottom-left corner of the panel
|
||||
panel_origin = Point3D(row["x"], row["y"], row["z"])
|
||||
@ -109,12 +113,17 @@ def create_panels(coordinates, c):
|
||||
# Create the panel geometry
|
||||
panel = Polyface3D.from_box(
|
||||
width=panel_width,
|
||||
depth=panel_length,
|
||||
height=panel_thickness,
|
||||
depth=panel_thickness,
|
||||
height=panel_length,
|
||||
base_plane=panel_plane,
|
||||
)
|
||||
|
||||
panels.append(panel)
|
||||
panel_object.append(panel)
|
||||
base_planes.append(panel_plane)
|
||||
|
||||
panels = pd.DataFrame(columns=["panel", "base_plane"])
|
||||
panels["panel"] = panel_object
|
||||
panels["base_plane"] = base_planes
|
||||
|
||||
return panels
|
||||
|
||||
@ -159,57 +168,7 @@ def calculate_sun_vector(solar_zenith, solar_azimuth):
|
||||
|
||||
# Calculate the sun vector components
|
||||
x = math.sin(zenith_rad) * math.cos(azimuth_rad)
|
||||
y = math.sin(zenith_rad) * math.sin(azimuth_rad)
|
||||
z = math.cos(zenith_rad)
|
||||
z = math.sin(zenith_rad) * math.sin(azimuth_rad)
|
||||
y = math.cos(zenith_rad)
|
||||
|
||||
return Vector3D(x, y, z)
|
||||
|
||||
|
||||
def compute_array_shading(panels, sun_vector, n_samples=25):
|
||||
"""
|
||||
Given a list of panel geometries (Polyface3D) and the sun vector,
|
||||
compute the shading fraction for each panel and return the overall average shading.
|
||||
|
||||
Parameters:
|
||||
panels: List of Polyface3D objects representing the PV panels.
|
||||
sun_vector: Unit Vector3D in the direction of the sun.
|
||||
n_samples: Number of sample points per panel.
|
||||
|
||||
Returns:
|
||||
Dictionary mapping panel index to its shading fraction, and the overall average.
|
||||
"""
|
||||
shading_results = {}
|
||||
for i, panel in enumerate(panels):
|
||||
# Define obstacles as all other panels in the array
|
||||
obstacles = [pan for j, pan in enumerate(panels) if j != i]
|
||||
shading_frac = calculate_shading_fraction(
|
||||
panel, sun_vector, obstacles, n_samples=n_samples
|
||||
)
|
||||
shading_results[i] = shading_frac
|
||||
# Compute the overall average shading fraction across all panels:
|
||||
overall_avg = np.mean(list(shading_results.values()))
|
||||
return shading_results, overall_avg
|
||||
|
||||
|
||||
def calculate_shading_fraction(c):
|
||||
coordinates = define_grid_layout(c)
|
||||
panels = create_panels(coordinates, c)
|
||||
solar_positions = get_solar_data(c)
|
||||
|
||||
shading_fractions = []
|
||||
for panel in panels:
|
||||
shading_fraction = []
|
||||
for index, row in solar_positions.iterrows():
|
||||
# Get the solar position for the current time step
|
||||
# in a sphere, azimuth is the angle in the x-y plane from the north
|
||||
# and zenith is the angle from the vertical axis
|
||||
solar_zenith = row["apparent_zenith"]
|
||||
solar_azimuth = row["apparent_azimuth"]
|
||||
sun_vector = calculate_sun_vector(solar_zenith, solar_azimuth)
|
||||
|
||||
# Calculate the shading fraction using the panel and solar position
|
||||
shading_fraction.append(panel.shading_fraction(solar_zenith, solar_azimuth))
|
||||
|
||||
shading_fractions.append(shading_fraction)
|
||||
|
||||
return shading_fractions
|
||||
|
Loading…
x
Reference in New Issue
Block a user