pivot modelling method to using pvlib shading_fraction1d
This commit is contained in:
		
							parent
							
								
									ccd4afbcd6
								
							
						
					
					
						commit
						a36a8db753
					
				| @ -1,4 +1,5 @@ | ||||
| import numpy as np | ||||
| from ladybug_geometry.geometry3d import Point3D, Vector3D | ||||
| 
 | ||||
| 
 | ||||
| def calculate_no_of_panels(system_size, panel_peak_power): | ||||
|  | ||||
| @ -2,6 +2,7 @@ import numpy as np | ||||
| import pandas as pd | ||||
| import logging | ||||
| import math | ||||
| from tqdm import tqdm | ||||
| 
 | ||||
| from ladybug_geometry.geometry3d.pointvector import Point3D, Vector3D | ||||
| from ladybug_geometry.geometry3d.plane import Plane | ||||
| @ -9,7 +10,9 @@ from ladybug_geometry.geometry3d.polyface import Polyface3D | ||||
| 
 | ||||
| import pvlib | ||||
| 
 | ||||
| from Utilities.Processes import calculate_no_of_panels | ||||
| from Utilities.Processes import ( | ||||
|     calculate_no_of_panels, | ||||
| ) | ||||
| 
 | ||||
| logger = logging.getLogger(__name__) | ||||
| 
 | ||||
| @ -98,7 +101,8 @@ def create_panels(coordinates, c): | ||||
|     #   Here, we assume the width runs in the positive X-direction. | ||||
|     x_axis = Vector3D(1, 0, 0)  # points north | ||||
| 
 | ||||
|     panels = [] | ||||
|     panel_object = [] | ||||
|     base_planes = [] | ||||
|     for index, row in coordinates.iterrows(): | ||||
|         # Create the bottom-left corner of the panel | ||||
|         panel_origin = Point3D(row["x"], row["y"], row["z"]) | ||||
| @ -109,12 +113,17 @@ def create_panels(coordinates, c): | ||||
|         # Create the panel geometry | ||||
|         panel = Polyface3D.from_box( | ||||
|             width=panel_width, | ||||
|             depth=panel_length, | ||||
|             height=panel_thickness, | ||||
|             depth=panel_thickness, | ||||
|             height=panel_length, | ||||
|             base_plane=panel_plane, | ||||
|         ) | ||||
| 
 | ||||
|         panels.append(panel) | ||||
|         panel_object.append(panel) | ||||
|         base_planes.append(panel_plane) | ||||
| 
 | ||||
|     panels = pd.DataFrame(columns=["panel", "base_plane"]) | ||||
|     panels["panel"] = panel_object | ||||
|     panels["base_plane"] = base_planes | ||||
| 
 | ||||
|     return panels | ||||
| 
 | ||||
| @ -159,57 +168,7 @@ def calculate_sun_vector(solar_zenith, solar_azimuth): | ||||
| 
 | ||||
|     # Calculate the sun vector components | ||||
|     x = math.sin(zenith_rad) * math.cos(azimuth_rad) | ||||
|     y = math.sin(zenith_rad) * math.sin(azimuth_rad) | ||||
|     z = math.cos(zenith_rad) | ||||
|     z = math.sin(zenith_rad) * math.sin(azimuth_rad) | ||||
|     y = math.cos(zenith_rad) | ||||
| 
 | ||||
|     return Vector3D(x, y, z) | ||||
| 
 | ||||
| 
 | ||||
| def compute_array_shading(panels, sun_vector, n_samples=25): | ||||
|     """ | ||||
|     Given a list of panel geometries (Polyface3D) and the sun vector, | ||||
|     compute the shading fraction for each panel and return the overall average shading. | ||||
| 
 | ||||
|     Parameters: | ||||
|       panels: List of Polyface3D objects representing the PV panels. | ||||
|       sun_vector: Unit Vector3D in the direction of the sun. | ||||
|       n_samples: Number of sample points per panel. | ||||
| 
 | ||||
|     Returns: | ||||
|       Dictionary mapping panel index to its shading fraction, and the overall average. | ||||
|     """ | ||||
|     shading_results = {} | ||||
|     for i, panel in enumerate(panels): | ||||
|         # Define obstacles as all other panels in the array | ||||
|         obstacles = [pan for j, pan in enumerate(panels) if j != i] | ||||
|         shading_frac = calculate_shading_fraction( | ||||
|             panel, sun_vector, obstacles, n_samples=n_samples | ||||
|         ) | ||||
|         shading_results[i] = shading_frac | ||||
|     # Compute the overall average shading fraction across all panels: | ||||
|     overall_avg = np.mean(list(shading_results.values())) | ||||
|     return shading_results, overall_avg | ||||
| 
 | ||||
| 
 | ||||
| def calculate_shading_fraction(c): | ||||
|     coordinates = define_grid_layout(c) | ||||
|     panels = create_panels(coordinates, c) | ||||
|     solar_positions = get_solar_data(c) | ||||
| 
 | ||||
|     shading_fractions = [] | ||||
|     for panel in panels: | ||||
|         shading_fraction = [] | ||||
|         for index, row in solar_positions.iterrows(): | ||||
|             # Get the solar position for the current time step | ||||
|             # in a sphere, azimuth is the angle in the x-y plane from the north | ||||
|             # and zenith is the angle from the vertical axis | ||||
|             solar_zenith = row["apparent_zenith"] | ||||
|             solar_azimuth = row["apparent_azimuth"] | ||||
|             sun_vector = calculate_sun_vector(solar_zenith, solar_azimuth) | ||||
| 
 | ||||
|             # Calculate the shading fraction using the panel and solar position | ||||
|             shading_fraction.append(panel.shading_fraction(solar_zenith, solar_azimuth)) | ||||
| 
 | ||||
|         shading_fractions.append(shading_fraction) | ||||
| 
 | ||||
|     return shading_fractions | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user