comparison of vertical vs horizontal panels

This commit is contained in:
Lucas Tan 2025-04-02 16:35:23 +08:00
parent ca4fcd8f49
commit bba47e48b7
3 changed files with 120 additions and 21 deletions

View File

@ -2,7 +2,6 @@ import numpy as np
import pandas as pd
import logging
import math
from tqdm import tqdm
import pvlib
@ -23,7 +22,7 @@ def get_location(c):
return location
def define_grid_layout(c):
def define_grid_layout(c, panel_tilt):
# get number of panels required
no_of_panels = calculate_no_of_panels(
c["array"]["system_size"], c["panel"]["peak_power"]
@ -33,7 +32,7 @@ def define_grid_layout(c):
pitch = c["array"]["spacing"] + c["panel"]["dimensions"]["thickness"]
# calculate minimum pitch if we don't want panel overlap at all
min_pitch = c["panel"]["dimensions"]["length"] * math.cos(
c["array"]["tilt"] / 180 * math.pi
panel_tilt / 180 * math.pi
)
if pitch < min_pitch:
logger.warning(
@ -129,8 +128,8 @@ def get_solar_data(c):
return solar_positions, clearsky_data
def calculate_shading(c):
panel_coordinates, no_of_panels = define_grid_layout(c)
def calculate_energy_production_vertical(c):
panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=90)
solar_positions, clearsky_data = get_solar_data(c)
# split the solar positions data into morning and afternoon, using solar azimuth of
@ -146,10 +145,10 @@ def calculate_shading(c):
# calculate delta between unique y coordinates of panels to get pitch
pitch = np.unique(panel_coordinates["y"])[1] - np.unique(panel_coordinates["y"])[0]
surface_to_axis_offset = 0
shaded_row_rotation = c["array"]["tilt"]
shading_row_rotation = c["array"]["tilt"]
shaded_row_rotation = 90
shading_row_rotation = 90
axis_tilt = 0
axis_azimuth = c["array"]["front_face_azimuth"]
axis_azimuth = 90
morning_shaded_fraction = pvlib.shading.shaded_fraction1d(
solar_zenith=morning_solar_positions["zenith"],
@ -184,25 +183,27 @@ def calculate_shading(c):
# calculate irradiance on plane of array
poa_front = pvlib.irradiance.get_total_irradiance(
surface_tilt=c["array"]["tilt"],
surface_azimuth=c["array"]["front_face_azimuth"],
surface_tilt=90,
surface_azimuth=axis_azimuth,
solar_zenith=morning_solar_positions["zenith"],
solar_azimuth=morning_solar_positions["azimuth"],
dni=clearsky_data["dni"],
ghi=clearsky_data["ghi"],
dhi=clearsky_data["dhi"],
albedo=0.5,
)
# drop rows with poa_global NaN values
poa_front = poa_front.dropna(subset=["poa_global"])
poa_rear = pvlib.irradiance.get_total_irradiance(
surface_tilt=180 - c["array"]["tilt"],
surface_azimuth=c["array"]["front_face_azimuth"] + 180,
surface_tilt=180 - 90,
surface_azimuth=axis_azimuth + 180,
solar_zenith=afternoon_solar_positions["zenith"],
solar_azimuth=afternoon_solar_positions["azimuth"],
dni=clearsky_data["dni"],
ghi=clearsky_data["ghi"],
dhi=clearsky_data["dhi"],
albedo=0.5,
)
# drop rows with poa_global NaN values
poa_rear = poa_rear.dropna(subset=["poa_global"])
@ -221,10 +222,74 @@ def calculate_shading(c):
energy_front = effective_front * 15 / 60 / 1e3
energy_rear = effective_rear * 15 / 60 / 1e3
energy_total = energy_front.sum() + energy_rear.sum()
total_hourly_energy_m2 = energy_front.add(energy_rear, fill_value=0)
energy_total = total_hourly_energy_m2.sum()
logger.info(f"Energy yield calculated: {energy_total} kWh/m2")
panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"]
total_area = panel_area * no_of_panels
total_energy = energy_total * total_area
total_hourly_energy = total_hourly_energy_m2 * total_area
total_energy = total_hourly_energy.sum()
logger.info(f"Total energy yield calculated: {total_energy} kWh")
return total_hourly_energy
def calculate_energy_production_horizontal(c):
panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=0)
solar_positions, clearsky_data = get_solar_data(c)
# the first row is always not shaded so exclude
no_of_rows = np.unique(panel_coordinates["y"]).shape[0]
no_of_shaded_rows = no_of_rows - 1
collector_width = c["panel"]["dimensions"]["length"]
# calculate delta between unique y coordinates of panels to get pitch
pitch = np.unique(panel_coordinates["y"])[1] - np.unique(panel_coordinates["y"])[0]
surface_to_axis_offset = 0
shaded_row_rotation = 0
shading_row_rotation = 0
axis_tilt = 0
axis_azimuth = 180 # south facing
shaded_fraction = pvlib.shading.shaded_fraction1d(
solar_zenith=solar_positions["zenith"],
solar_azimuth=solar_positions["azimuth"],
axis_azimuth=axis_azimuth,
shaded_row_rotation=shaded_row_rotation,
shading_row_rotation=shading_row_rotation,
collector_width=collector_width,
pitch=pitch,
surface_to_axis_offset=surface_to_axis_offset,
axis_tilt=axis_tilt,
)
shaded_fraction = shaded_fraction * no_of_shaded_rows / no_of_rows
logger.info(f"Shaded fraction calculated for solar positions.")
poa = pvlib.irradiance.get_total_irradiance(
surface_tilt=0,
surface_azimuth=axis_azimuth,
solar_zenith=solar_positions["zenith"],
solar_azimuth=solar_positions["azimuth"],
dni=clearsky_data["dni"],
ghi=clearsky_data["ghi"],
dhi=clearsky_data["dhi"],
surface_type="urban",
)
poa = poa.dropna(subset=["poa_global"])
effective_front = (
poa["poa_global"] * (1 - shaded_fraction) * c["panel"]["efficiency"]
)
total_hourly_energy_m2 = effective_front * 15 / 60 / 1e3
energy_total = total_hourly_energy_m2.sum()
logger.info(f"Energy yield calculated: {energy_total} kWh/m2")
panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"]
total_area = panel_area * no_of_panels
total_hourly_energy = total_hourly_energy_m2 * total_area
total_energy = total_hourly_energy.sum()
logger.info(f"Total energy yield calculated: {total_energy} kWh")
return total_hourly_energy

View File

@ -1,9 +1,8 @@
array:
system_size: 400 # in kWp
spacing: 0.5 # spacing between adjacent panel rows in m
spacing: 1 # spacing between adjacent panel rows in m
edge_setback: 1.8 # distance from the edge of the roof to the array
front_face_azimuth: 90 # 90=east, 180=south, 270=west
tilt: 90 # just 0 and 90 are supported for now
roof_slope: 0
slope: 0 # degrees from horizontal (+ve means shaded row is higher than the row in front)
simulation_date_time:

43
main.py
View File

@ -1,7 +1,12 @@
# %%
import yaml
import logging
from Utilities.Shading import calculate_shading
import numpy as np
import matplotlib.pyplot as pl
from Utilities.Shading import (
calculate_energy_production_horizontal,
calculate_energy_production_vertical,
)
logging.basicConfig(
level=logging.INFO,
@ -24,7 +29,37 @@ with open(config_path, "r") as file:
logger.info("Configuration loaded successfully.")
logger.debug(f"Configuration: {c}")
shading = calculate_shading(c)
logger.info("Shading calculation completed successfully.")
# calculate energy production for horizontal and vertical panels
horizontal_energy = calculate_energy_production_horizontal(c)
logger.info("Energy production for horizontal panels calculated successfully.")
logger.debug(f"Horizontal Energy Production: {horizontal_energy.sum()}")
# %%
vertical_energy = calculate_energy_production_vertical(c)
logger.info("Energy production for vertical panels calculated successfully.")
logger.debug(f"Vertical Energy Production: {vertical_energy.sum()}")
NOVA_scaledown = 0.75
horizontal_energy_scaled = horizontal_energy * NOVA_scaledown
logger.info("Energy production for horizontal panels scaled down to NOVA requirement.")
logger.info(
f"Energy production for horizontal panels: {np.round(horizontal_energy_scaled.sum(),0)} kWh"
)
logger.info(
f"Energy production for vertical panels: {np.round(vertical_energy.sum(),0)} kWh"
)
# overlay horizontal and vertical energy production
pl.figure(figsize=(10, 6))
pl.plot(
horizontal_energy_scaled.index,
horizontal_energy_scaled.values,
label="Horizontal Panels",
)
pl.plot(vertical_energy.index, vertical_energy.values, label="Vertical Panels")
pl.title("Energy Production Comparison")
pl.xlabel("Time")
pl.ylabel("Energy Production (kWh)")
pl.legend()
pl.show()