comparison of vertical vs horizontal panels
This commit is contained in:
		
							parent
							
								
									ca4fcd8f49
								
							
						
					
					
						commit
						bba47e48b7
					
				| @ -2,7 +2,6 @@ import numpy as np | ||||
| import pandas as pd | ||||
| import logging | ||||
| import math | ||||
| from tqdm import tqdm | ||||
| 
 | ||||
| import pvlib | ||||
| 
 | ||||
| @ -23,7 +22,7 @@ def get_location(c): | ||||
|     return location | ||||
| 
 | ||||
| 
 | ||||
| def define_grid_layout(c): | ||||
| def define_grid_layout(c, panel_tilt): | ||||
|     # get number of panels required | ||||
|     no_of_panels = calculate_no_of_panels( | ||||
|         c["array"]["system_size"], c["panel"]["peak_power"] | ||||
| @ -33,7 +32,7 @@ def define_grid_layout(c): | ||||
|     pitch = c["array"]["spacing"] + c["panel"]["dimensions"]["thickness"] | ||||
|     # calculate minimum pitch if we don't want panel overlap at all | ||||
|     min_pitch = c["panel"]["dimensions"]["length"] * math.cos( | ||||
|         c["array"]["tilt"] / 180 * math.pi | ||||
|         panel_tilt / 180 * math.pi | ||||
|     ) | ||||
|     if pitch < min_pitch: | ||||
|         logger.warning( | ||||
| @ -129,8 +128,8 @@ def get_solar_data(c): | ||||
|     return solar_positions, clearsky_data | ||||
| 
 | ||||
| 
 | ||||
| def calculate_shading(c): | ||||
|     panel_coordinates, no_of_panels = define_grid_layout(c) | ||||
| def calculate_energy_production_vertical(c): | ||||
|     panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=90) | ||||
|     solar_positions, clearsky_data = get_solar_data(c) | ||||
| 
 | ||||
|     # split the solar positions data into morning and afternoon, using solar azimuth of | ||||
| @ -146,10 +145,10 @@ def calculate_shading(c): | ||||
|     # calculate delta between unique y coordinates of panels to get pitch | ||||
|     pitch = np.unique(panel_coordinates["y"])[1] - np.unique(panel_coordinates["y"])[0] | ||||
|     surface_to_axis_offset = 0 | ||||
|     shaded_row_rotation = c["array"]["tilt"] | ||||
|     shading_row_rotation = c["array"]["tilt"] | ||||
|     shaded_row_rotation = 90 | ||||
|     shading_row_rotation = 90 | ||||
|     axis_tilt = 0 | ||||
|     axis_azimuth = c["array"]["front_face_azimuth"] | ||||
|     axis_azimuth = 90 | ||||
| 
 | ||||
|     morning_shaded_fraction = pvlib.shading.shaded_fraction1d( | ||||
|         solar_zenith=morning_solar_positions["zenith"], | ||||
| @ -184,25 +183,27 @@ def calculate_shading(c): | ||||
| 
 | ||||
|     # calculate irradiance on plane of array | ||||
|     poa_front = pvlib.irradiance.get_total_irradiance( | ||||
|         surface_tilt=c["array"]["tilt"], | ||||
|         surface_azimuth=c["array"]["front_face_azimuth"], | ||||
|         surface_tilt=90, | ||||
|         surface_azimuth=axis_azimuth, | ||||
|         solar_zenith=morning_solar_positions["zenith"], | ||||
|         solar_azimuth=morning_solar_positions["azimuth"], | ||||
|         dni=clearsky_data["dni"], | ||||
|         ghi=clearsky_data["ghi"], | ||||
|         dhi=clearsky_data["dhi"], | ||||
|         albedo=0.5, | ||||
|     ) | ||||
|     # drop rows with poa_global NaN values | ||||
|     poa_front = poa_front.dropna(subset=["poa_global"]) | ||||
| 
 | ||||
|     poa_rear = pvlib.irradiance.get_total_irradiance( | ||||
|         surface_tilt=180 - c["array"]["tilt"], | ||||
|         surface_azimuth=c["array"]["front_face_azimuth"] + 180, | ||||
|         surface_tilt=180 - 90, | ||||
|         surface_azimuth=axis_azimuth + 180, | ||||
|         solar_zenith=afternoon_solar_positions["zenith"], | ||||
|         solar_azimuth=afternoon_solar_positions["azimuth"], | ||||
|         dni=clearsky_data["dni"], | ||||
|         ghi=clearsky_data["ghi"], | ||||
|         dhi=clearsky_data["dhi"], | ||||
|         albedo=0.5, | ||||
|     ) | ||||
|     # drop rows with poa_global NaN values | ||||
|     poa_rear = poa_rear.dropna(subset=["poa_global"]) | ||||
| @ -221,10 +222,74 @@ def calculate_shading(c): | ||||
| 
 | ||||
|     energy_front = effective_front * 15 / 60 / 1e3 | ||||
|     energy_rear = effective_rear * 15 / 60 / 1e3 | ||||
|     energy_total = energy_front.sum() + energy_rear.sum() | ||||
|     total_hourly_energy_m2 = energy_front.add(energy_rear, fill_value=0) | ||||
|     energy_total = total_hourly_energy_m2.sum() | ||||
|     logger.info(f"Energy yield calculated: {energy_total} kWh/m2") | ||||
| 
 | ||||
|     panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"] | ||||
|     total_area = panel_area * no_of_panels | ||||
|     total_energy = energy_total * total_area | ||||
|     total_hourly_energy = total_hourly_energy_m2 * total_area | ||||
|     total_energy = total_hourly_energy.sum() | ||||
|     logger.info(f"Total energy yield calculated: {total_energy} kWh") | ||||
| 
 | ||||
|     return total_hourly_energy | ||||
| 
 | ||||
| 
 | ||||
| def calculate_energy_production_horizontal(c): | ||||
|     panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=0) | ||||
|     solar_positions, clearsky_data = get_solar_data(c) | ||||
| 
 | ||||
|     # the first row is always not shaded so exclude | ||||
|     no_of_rows = np.unique(panel_coordinates["y"]).shape[0] | ||||
|     no_of_shaded_rows = no_of_rows - 1 | ||||
| 
 | ||||
|     collector_width = c["panel"]["dimensions"]["length"] | ||||
|     # calculate delta between unique y coordinates of panels to get pitch | ||||
|     pitch = np.unique(panel_coordinates["y"])[1] - np.unique(panel_coordinates["y"])[0] | ||||
|     surface_to_axis_offset = 0 | ||||
|     shaded_row_rotation = 0 | ||||
|     shading_row_rotation = 0 | ||||
|     axis_tilt = 0 | ||||
|     axis_azimuth = 180  # south facing | ||||
| 
 | ||||
|     shaded_fraction = pvlib.shading.shaded_fraction1d( | ||||
|         solar_zenith=solar_positions["zenith"], | ||||
|         solar_azimuth=solar_positions["azimuth"], | ||||
|         axis_azimuth=axis_azimuth, | ||||
|         shaded_row_rotation=shaded_row_rotation, | ||||
|         shading_row_rotation=shading_row_rotation, | ||||
|         collector_width=collector_width, | ||||
|         pitch=pitch, | ||||
|         surface_to_axis_offset=surface_to_axis_offset, | ||||
|         axis_tilt=axis_tilt, | ||||
|     ) | ||||
|     shaded_fraction = shaded_fraction * no_of_shaded_rows / no_of_rows | ||||
|     logger.info(f"Shaded fraction calculated for solar positions.") | ||||
| 
 | ||||
|     poa = pvlib.irradiance.get_total_irradiance( | ||||
|         surface_tilt=0, | ||||
|         surface_azimuth=axis_azimuth, | ||||
|         solar_zenith=solar_positions["zenith"], | ||||
|         solar_azimuth=solar_positions["azimuth"], | ||||
|         dni=clearsky_data["dni"], | ||||
|         ghi=clearsky_data["ghi"], | ||||
|         dhi=clearsky_data["dhi"], | ||||
|         surface_type="urban", | ||||
|     ) | ||||
|     poa = poa.dropna(subset=["poa_global"]) | ||||
| 
 | ||||
|     effective_front = ( | ||||
|         poa["poa_global"] * (1 - shaded_fraction) * c["panel"]["efficiency"] | ||||
|     ) | ||||
| 
 | ||||
|     total_hourly_energy_m2 = effective_front * 15 / 60 / 1e3 | ||||
|     energy_total = total_hourly_energy_m2.sum() | ||||
|     logger.info(f"Energy yield calculated: {energy_total} kWh/m2") | ||||
| 
 | ||||
|     panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"] | ||||
|     total_area = panel_area * no_of_panels | ||||
|     total_hourly_energy = total_hourly_energy_m2 * total_area | ||||
|     total_energy = total_hourly_energy.sum() | ||||
|     logger.info(f"Total energy yield calculated: {total_energy} kWh") | ||||
| 
 | ||||
|     return total_hourly_energy | ||||
|  | ||||
| @ -1,9 +1,8 @@ | ||||
| array: | ||||
|   system_size: 400 # in kWp | ||||
|   spacing: 0.5 # spacing between adjacent panel rows in m | ||||
|   spacing: 1 # spacing between adjacent panel rows in m | ||||
|   edge_setback: 1.8 # distance from the edge of the roof to the array | ||||
|   front_face_azimuth: 90 # 90=east, 180=south, 270=west | ||||
|   tilt: 90 # just 0 and 90 are supported for now | ||||
|   roof_slope: 0 | ||||
|   slope: 0 # degrees from horizontal (+ve means shaded row is higher than the row in front) | ||||
| 
 | ||||
| simulation_date_time: | ||||
|  | ||||
							
								
								
									
										43
									
								
								main.py
									
									
									
									
									
								
							
							
						
						
									
										43
									
								
								main.py
									
									
									
									
									
								
							| @ -1,7 +1,12 @@ | ||||
| # %% | ||||
| import yaml | ||||
| import logging | ||||
| from Utilities.Shading import calculate_shading | ||||
| import numpy as np | ||||
| import matplotlib.pyplot as pl | ||||
| from Utilities.Shading import ( | ||||
|     calculate_energy_production_horizontal, | ||||
|     calculate_energy_production_vertical, | ||||
| ) | ||||
| 
 | ||||
| logging.basicConfig( | ||||
|     level=logging.INFO, | ||||
| @ -24,7 +29,37 @@ with open(config_path, "r") as file: | ||||
| logger.info("Configuration loaded successfully.") | ||||
| logger.debug(f"Configuration: {c}") | ||||
| 
 | ||||
| shading = calculate_shading(c) | ||||
| logger.info("Shading calculation completed successfully.") | ||||
| # calculate energy production for horizontal and vertical panels | ||||
| horizontal_energy = calculate_energy_production_horizontal(c) | ||||
| logger.info("Energy production for horizontal panels calculated successfully.") | ||||
| logger.debug(f"Horizontal Energy Production: {horizontal_energy.sum()}") | ||||
| 
 | ||||
| # %% | ||||
| vertical_energy = calculate_energy_production_vertical(c) | ||||
| logger.info("Energy production for vertical panels calculated successfully.") | ||||
| logger.debug(f"Vertical Energy Production: {vertical_energy.sum()}") | ||||
| 
 | ||||
| NOVA_scaledown = 0.75 | ||||
| 
 | ||||
| horizontal_energy_scaled = horizontal_energy * NOVA_scaledown | ||||
| logger.info("Energy production for horizontal panels scaled down to NOVA requirement.") | ||||
| 
 | ||||
| logger.info( | ||||
|     f"Energy production for horizontal panels: {np.round(horizontal_energy_scaled.sum(),0)} kWh" | ||||
| ) | ||||
| logger.info( | ||||
|     f"Energy production for vertical panels: {np.round(vertical_energy.sum(),0)} kWh" | ||||
| ) | ||||
| 
 | ||||
| # overlay horizontal and vertical energy production | ||||
| pl.figure(figsize=(10, 6)) | ||||
| pl.plot( | ||||
|     horizontal_energy_scaled.index, | ||||
|     horizontal_energy_scaled.values, | ||||
|     label="Horizontal Panels", | ||||
| ) | ||||
| pl.plot(vertical_energy.index, vertical_energy.values, label="Vertical Panels") | ||||
| pl.title("Energy Production Comparison") | ||||
| pl.xlabel("Time") | ||||
| pl.ylabel("Energy Production (kWh)") | ||||
| pl.legend() | ||||
| pl.show() | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user