295 lines
10 KiB
Python
295 lines
10 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
import logging
|
|
import math
|
|
|
|
import pvlib
|
|
|
|
from Utilities.Processes import (
|
|
calculate_no_of_panels,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def get_location(c):
|
|
location = pvlib.location.Location(
|
|
latitude=c["environment"]["location"]["latitude"],
|
|
longitude=c["environment"]["location"]["longitude"],
|
|
tz=c["simulation_date_time"]["tz"],
|
|
)
|
|
|
|
return location
|
|
|
|
|
|
def define_grid_layout(c, panel_tilt):
|
|
# get number of panels required
|
|
no_of_panels = calculate_no_of_panels(
|
|
c["array"]["system_size"], c["panel"]["peak_power"]
|
|
)
|
|
|
|
# calculate pitch
|
|
pitch = c["array"]["spacing"] + c["panel"]["dimensions"]["thickness"]
|
|
# calculate minimum pitch if we don't want panel overlap at all
|
|
min_pitch = c["panel"]["dimensions"]["length"] * math.cos(
|
|
panel_tilt / 180 * math.pi
|
|
)
|
|
if pitch < min_pitch:
|
|
logger.warning(
|
|
f"Spacing is less than minimum pitch. Setting spacing to {min_pitch}."
|
|
)
|
|
pitch = min_pitch
|
|
logger.info(f"Pitch between panels: {pitch}m")
|
|
|
|
# get maximum number of panels based on spacing and dimensions
|
|
max__panels_per_row = np.floor(
|
|
(
|
|
c["environment"]["roof"]["dimensions"]["width"]
|
|
- (2 * c["array"]["edge_setback"] + c["panel"]["dimensions"]["width"])
|
|
)
|
|
/ c["panel"]["dimensions"]["width"]
|
|
)
|
|
max_number_of_rows = np.floor(
|
|
(
|
|
c["environment"]["roof"]["dimensions"]["length"]
|
|
- (2 * c["array"]["edge_setback"] + c["panel"]["dimensions"]["length"])
|
|
)
|
|
/ pitch
|
|
)
|
|
max_no_of_panels = max__panels_per_row * max_number_of_rows
|
|
logger.info(
|
|
f"Number of panels required: {no_of_panels}, Maximum panels possible: {max_no_of_panels}"
|
|
)
|
|
if no_of_panels > max_no_of_panels:
|
|
no_of_panels = max_no_of_panels
|
|
logger.warning(
|
|
f"Number of panels required exceeds maximum possible. Setting number of panels to {no_of_panels}."
|
|
)
|
|
else:
|
|
logger.info(
|
|
f"Number of panels required is within the maximum possible. Setting number of panels to {no_of_panels}."
|
|
)
|
|
|
|
# coordinate of panel determined by bottom left corner
|
|
# x - row wise position, y - column wise position, z - height
|
|
# first panel in row 1 is at (0, 0, 0)
|
|
# nth panel in row 1 is at ((n-1)*panel_width, 0, 0)
|
|
# first panel in nth row is at (0, (n-1)*(panel_thickness + spacing), 0)
|
|
|
|
# create matrices for x, y, z coordinates of panels
|
|
x = []
|
|
y = []
|
|
z = []
|
|
counter = 0
|
|
for j in range(int(max_number_of_rows)):
|
|
for i in range(int(max__panels_per_row)):
|
|
if counter < no_of_panels:
|
|
x.append(i * c["panel"]["dimensions"]["width"])
|
|
y.append(j * pitch)
|
|
z.append(0)
|
|
counter += 1
|
|
else:
|
|
break
|
|
|
|
coordinates = pd.DataFrame(
|
|
{
|
|
"x": x,
|
|
"y": y,
|
|
"z": z,
|
|
}
|
|
)
|
|
return coordinates, no_of_panels
|
|
|
|
|
|
def get_solar_data(c):
|
|
logger.info(
|
|
f"Getting solar position data for {c['simulation_date_time']['start']} to {c['simulation_date_time']['end']}"
|
|
)
|
|
"""
|
|
Function to get solar position from PVLib
|
|
"""
|
|
location = get_location(c)
|
|
|
|
times = pd.date_range(
|
|
c["simulation_date_time"]["start"],
|
|
c["simulation_date_time"]["end"],
|
|
freq="15min",
|
|
tz=location.tz,
|
|
)
|
|
|
|
# Get solar position data using PVLib
|
|
solar_positions = location.get_solarposition(times)
|
|
# filter solar positions to only include times when the sun is above the horizon
|
|
solar_positions = solar_positions[solar_positions["apparent_elevation"] > 0]
|
|
# get datetime range from solar_positions
|
|
day_times = solar_positions.index
|
|
clearsky_data = location.get_clearsky(day_times)
|
|
|
|
return solar_positions, clearsky_data
|
|
|
|
|
|
def calculate_energy_production_vertical(c):
|
|
panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=90)
|
|
solar_positions, clearsky_data = get_solar_data(c)
|
|
|
|
# split the solar positions data into morning and afternoon, using solar azimuth of
|
|
# 180 degrees as the threshold
|
|
morning_solar_positions = solar_positions[solar_positions["azimuth"] <= 180]
|
|
afternoon_solar_positions = solar_positions[solar_positions["azimuth"] > 180]
|
|
|
|
# the first row is always not shaded so exclude
|
|
no_of_rows = np.unique(panel_coordinates["y"]).shape[0]
|
|
no_of_shaded_rows = no_of_rows - 1
|
|
|
|
collector_width = c["panel"]["dimensions"]["length"]
|
|
# calculate delta between unique y coordinates of panels to get pitch
|
|
pitch = np.unique(panel_coordinates["y"])[1] - np.unique(panel_coordinates["y"])[0]
|
|
surface_to_axis_offset = 0
|
|
shaded_row_rotation = 90
|
|
shading_row_rotation = 90
|
|
axis_tilt = 0
|
|
axis_azimuth = 90
|
|
|
|
morning_shaded_fraction = pvlib.shading.shaded_fraction1d(
|
|
solar_zenith=solar_positions["zenith"],
|
|
solar_azimuth=solar_positions["azimuth"],
|
|
axis_azimuth=axis_azimuth,
|
|
shaded_row_rotation=shaded_row_rotation,
|
|
shading_row_rotation=shading_row_rotation,
|
|
collector_width=collector_width,
|
|
pitch=pitch,
|
|
surface_to_axis_offset=surface_to_axis_offset,
|
|
axis_tilt=axis_tilt,
|
|
)
|
|
morning_shaded_fraction = morning_shaded_fraction * no_of_shaded_rows / no_of_rows
|
|
|
|
afternoon_shaded_fraction = pvlib.shading.shaded_fraction1d(
|
|
solar_zenith=solar_positions["zenith"],
|
|
solar_azimuth=solar_positions["azimuth"],
|
|
axis_azimuth=axis_azimuth + 180,
|
|
shaded_row_rotation=shaded_row_rotation,
|
|
shading_row_rotation=shading_row_rotation,
|
|
collector_width=collector_width,
|
|
pitch=pitch,
|
|
surface_to_axis_offset=surface_to_axis_offset,
|
|
axis_tilt=axis_tilt,
|
|
)
|
|
afternoon_shaded_fraction = (
|
|
afternoon_shaded_fraction * no_of_shaded_rows / no_of_rows
|
|
)
|
|
|
|
logger.info("Shaded fraction calculated for solar positions")
|
|
|
|
# calculate irradiance on plane of array
|
|
poa_front = pvlib.irradiance.get_total_irradiance(
|
|
surface_tilt=90,
|
|
surface_azimuth=axis_azimuth,
|
|
solar_zenith=solar_positions["zenith"],
|
|
solar_azimuth=solar_positions["azimuth"],
|
|
dni=clearsky_data["dni"],
|
|
ghi=clearsky_data["ghi"],
|
|
dhi=clearsky_data["dhi"],
|
|
surface_type="urban",
|
|
)
|
|
# drop rows with poa_global NaN values
|
|
poa_front = poa_front.dropna(subset=["poa_global"])
|
|
|
|
poa_rear = pvlib.irradiance.get_total_irradiance(
|
|
surface_tilt=180 - 90,
|
|
surface_azimuth=axis_azimuth + 180,
|
|
solar_zenith=solar_positions["zenith"],
|
|
solar_azimuth=solar_positions["azimuth"],
|
|
dni=clearsky_data["dni"],
|
|
ghi=clearsky_data["ghi"],
|
|
dhi=clearsky_data["dhi"],
|
|
surface_type="urban",
|
|
)
|
|
# drop rows with poa_global NaN values
|
|
poa_rear = poa_rear.dropna(subset=["poa_global"])
|
|
|
|
effective_front = (
|
|
poa_front["poa_global"]
|
|
* (1 - morning_shaded_fraction)
|
|
* c["panel"]["efficiency"]
|
|
)
|
|
effective_rear = (
|
|
poa_rear["poa_global"]
|
|
* (1 - afternoon_shaded_fraction)
|
|
* c["panel"]["bifaciality"]
|
|
* c["panel"]["efficiency"]
|
|
)
|
|
|
|
energy_front = effective_front * 15 / 60 / 1e3
|
|
energy_rear = effective_rear * 15 / 60 / 1e3
|
|
total_hourly_energy_m2 = energy_front + energy_rear
|
|
energy_total = total_hourly_energy_m2.sum()
|
|
logger.info(f"Energy yield calculated: {energy_total} kWh/m2")
|
|
|
|
panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"]
|
|
total_area = panel_area * no_of_panels
|
|
total_hourly_energy = total_hourly_energy_m2 * total_area
|
|
total_energy = total_hourly_energy.sum()
|
|
logger.info(f"Total energy yield calculated: {total_energy} kWh")
|
|
|
|
return total_hourly_energy
|
|
|
|
|
|
def calculate_energy_production_horizontal(c):
|
|
panel_coordinates, no_of_panels = define_grid_layout(c, panel_tilt=0)
|
|
solar_positions, clearsky_data = get_solar_data(c)
|
|
|
|
# the first row is always not shaded so exclude
|
|
no_of_rows = np.unique(panel_coordinates["y"]).shape[0]
|
|
no_of_shaded_rows = no_of_rows - 1
|
|
|
|
collector_width = c["panel"]["dimensions"]["length"]
|
|
# calculate delta between unique y coordinates of panels to get pitch
|
|
pitch = np.unique(panel_coordinates["y"])[1] - np.unique(panel_coordinates["y"])[0]
|
|
surface_to_axis_offset = 0
|
|
shaded_row_rotation = 0
|
|
shading_row_rotation = 0
|
|
axis_tilt = 0
|
|
axis_azimuth = 180 # south facing
|
|
|
|
shaded_fraction = pvlib.shading.shaded_fraction1d(
|
|
solar_zenith=solar_positions["zenith"],
|
|
solar_azimuth=solar_positions["azimuth"],
|
|
axis_azimuth=axis_azimuth,
|
|
shaded_row_rotation=shaded_row_rotation,
|
|
shading_row_rotation=shading_row_rotation,
|
|
collector_width=collector_width,
|
|
pitch=pitch,
|
|
surface_to_axis_offset=surface_to_axis_offset,
|
|
axis_tilt=axis_tilt,
|
|
)
|
|
shaded_fraction = shaded_fraction * no_of_shaded_rows / no_of_rows
|
|
logger.info(f"Shaded fraction calculated for solar positions: {shaded_fraction}")
|
|
|
|
poa = pvlib.irradiance.get_total_irradiance(
|
|
surface_tilt=0,
|
|
surface_azimuth=axis_azimuth,
|
|
solar_zenith=solar_positions["zenith"],
|
|
solar_azimuth=solar_positions["azimuth"],
|
|
dni=clearsky_data["dni"],
|
|
ghi=clearsky_data["ghi"],
|
|
dhi=clearsky_data["dhi"],
|
|
surface_type="urban",
|
|
)
|
|
poa = poa.dropna(subset=["poa_global"])
|
|
|
|
effective_front = (
|
|
poa["poa_global"] * (1 - shaded_fraction) * c["panel"]["efficiency"]
|
|
)
|
|
|
|
total_hourly_energy_m2 = effective_front * 15 / 60 / 1e3
|
|
energy_total = total_hourly_energy_m2.sum()
|
|
logger.info(f"Energy yield calculated: {energy_total} kWh/m2")
|
|
|
|
panel_area = c["panel"]["dimensions"]["length"] * c["panel"]["dimensions"]["width"]
|
|
total_area = panel_area * no_of_panels
|
|
total_hourly_energy = total_hourly_energy_m2 * total_area
|
|
total_energy = total_hourly_energy.sum()
|
|
logger.info(f"Total energy yield calculated: {total_energy} kWh")
|
|
|
|
return total_hourly_energy
|