MEOS/Utilities/BESS.py

99 lines
3.1 KiB
Python

import pandas as pd
def initialise_SoC(bess):
"""Initialise the state of charge (SoC) for the BESS."""
for i in range(0, len(bess["units"])): # initially fully charged
bess["units"][i]["SoC"] = 1
return bess
def initial_site_assignment(c, bess):
"""Initialise the site assignment for each BESS."""
for k in range(0, len(bess["units"])):
# assign each BESS unit to a site
if k < len(c["site_info"]["sites"]):
bess["units"][k]["site"] = c["site_info"]["sites"][k]["name"]
else:
bess["units"][k]["site"] = "Unassigned"
return bess
def discharge_bess(bess, site_name, dt, discharge_power):
# convert discharge power to discharge energy (kW to kWh)
discharge_energy = discharge_power * dt / 3600
"""Discharge the BESS for a specific site."""
for index, unit in enumerate(bess["units"]):
if unit["site"] == "Unassigned":
continue
if unit["site"] == site_name:
new_soc = unit["SoC"] - (dt * discharge_energy) / unit["capacity_kWh"]
new_soc = 0 if new_soc < 0 else new_soc
else:
# maintain SoC if not assigned to the site
new_soc = unit["SoC"]
# update SoC
bess["units"][index]["SoC"] = new_soc
return bess
def predict_swap_time(bess_soc_for_cycle):
"""Predict the swap time for each BESS unit based on its SoC history."""
swap_times = {}
min2sec = 60
threshold = 2 * min2sec # 2 minutes in seconds
for unit_name, df in bess_soc_for_cycle.items():
# need to be at least 1 min of operation to start estimation
if len(df) < threshold:
swap_times[unit_name] = None
continue
# linear extrapolation to estimate swap time
# calculate the slope of the SoC over time
m = (df["SoC"].iloc[-1] - df["SoC"].iloc[0]) / (
df["Timestamp"].iloc[-1] - df["Timestamp"].iloc[0]
)
if m == 0:
swap_times[unit_name] = None
continue
# solve for the time when SoC reaches 0
swap_time = (0 - df["SoC"].iloc[0]) / m + df["Timestamp"].iloc[0]
# assign to swap_times
swap_times[unit_name] = swap_time
return swap_times
def update_cycle_SoC(bess_data, bess_soc_for_cycle, timestamps):
init_df = pd.DataFrame(columns=["Timestamp", "SoC"])
# assign SoC for cycle
for unit in bess_data["units"]:
unit_name = unit["name"]
# reset df if SoC is 0. Start a new cycle
if unit["SoC"] == 0:
bess_soc_for_cycle[unit_name] = init_df
bess_soc_for_cycle[unit_name] = pd.concat(
[
bess_soc_for_cycle[unit_name],
pd.DataFrame(
[[timestamps[i], unit["SoC"]]],
columns=["Timestamp", "SoC"],
),
],
axis=0,
)
def arrange_swap(bess_data, c):
for unit in bess_data["units"]:
if unit["SoC"] < c["bess"]["buffer"]:
# find for unassigned BESS unit with SOC at 100%